Processing math: 100%

Thursday, October 27, 2011

The Relationship Between Moments and Cumulants

The latest assignment in my biomedical signal processing class, followed by my modest attempt at the proof:

Show that
\begin{eqnarray*}   c_{1} &=& m_{1}=\mu \\   c_{2} &=& m_{2} - m_{1}^{2}=\sigma^{2}. \end{eqnarray*}
That is, show that the first and second cumulants of a distribution are equal to the mean (\mu) and variance (\sigma^{2}), respectively.

Proof:
The nth moment of a continuous distribution, m_{n} is defined as:
\begin{eqnarray*}   m_{n} &=& E[x^{n}]\\   &=& \int_{-\infty}^{\infty}x^{n}p\left(x\right)\,dx. \end{eqnarray*}
A function that generates any moment is called a moment-generating function and is defined as E[e^{tX}]. where X is a random variable and E[f\left(X\right)] is the expected value of a function, f, of a random variable X.

If we expand the definition of E[e^{tX}] we can see that
\begin{eqnarray*}   E[e^{tX}] &=&   \int_{-\infty}^{\infty}p\left(X\right)\left(\sum_{n=0}^{\infty}\frac{t^{n}X^{n}}{n!}\right)\,\,\mathrm{d}x\\   &=& \int_{-\infty}^{\infty}p\left(X\right)\left(1 + tX + \frac{t^{2}X^{2}}{2!} + \cdots +     \frac{t^{n}X^{n}}{n!}\right)\,\,\mathrm{d}x\\   &=& 1 + tm_{1} + \frac{t^{2}m_{2}}{2!} + \cdots + \frac{t^{n}m_{n}}{n!}. \end{eqnarray*}

If we evaluate the nth derivative of E[e^{tX}] with respect to t at t=0, that is, \left(\frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}}E[e^{tX}]\right)_{t=0} = \frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}}\left(m_{0} + tm_{1} +   \frac{t^{2}m_{2}}{2!} + \cdots + \frac{t^{n}m_{n}}{n!}\right) we get the nth moment of a probability distribution.

The nth cumulant, c_{n}, of a continuous distribution is defined as:
\ln\left(E[e^{tX}]\right).
Since the power series definition of the natural logarithm of x is
\ln\left(x\right) = \sum_{n=1}^{\infty}\frac{\left(-1\right)^{n+1}}{n}\left(x - 1\right)^{n},
we can rewrite the definition of the nth cumulant, c_{n}, as
\begin{eqnarray*}   \ln\left(E[e^{tX}]\right) &=&   \sum_{n=1}^{\infty}\frac{\left(-1\right)^{n+1}}{n}\left(tm_{1} +     \frac{t^{2}m_{2}}{2!} + \cdots\right)^{n} \end{eqnarray*}
Expanding the terms from the previous equation we see that,
\begin{eqnarray*}   \ln\left(E[e^{tX}]\right) &=& \left(tm_{1} +     \frac{t^{2}m_{2}}{2!} + \cdots\right) - \frac{1}{2}\left(tm_{1} +     \frac{t^{2}m_{2}}{2!} + \cdots\right)^{2} + \cdots\\ &=&\left(tm_{1} +     \frac{t^{2}m_{2}}{2!} + \cdots\right)-\frac{1}{2}\left(t^{2}m_{1}^{2}+\frac{t^{3}m_{1}m_{2}}{2}+\cdots\right) + \cdots. \end{eqnarray*}
Now do a little algebra on the second term of \ln\left(E[e^{tX}]\right) to get
\left(tm_{1}+\frac{t^{2}m_{2}}{2!}+\cdots\right)-\frac{t^{2}m_{1}^{2}}{2}-\frac{t^{3}m_{1}m_{2}}{4}+\cdots

The first derivative, with respect to t, evaluated at 0 gives m_{1}. The second derivative evaluated at 0 gives

\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}\left(\frac{t^{2}m_{2}}{2!}\right) =m_{2}.
Then we see that m_{2} - m_{1}^{2} gives the variance.

Thus it is shown that the first two cumulants of a distribution are the mean and variance, respectively.

No comments:

Post a Comment